RSS订阅

综合资讯

您现在的位置:首页/行业新闻/综合资讯

Cell:特定MicroRNA半衰期可迅速转换

2010年07月16日 浏览量: 评论(0) 来源:科学时报 作者:佚名 责任编辑:lwc
摘要:小核糖核酸(miRNAs,又称小RNA)通常被认为具有很长的半衰期。然而,瑞士科学家日前发现,在小鼠的视网膜中,为了响应黑暗与光亮的影响,特定miRNA的水平能够迅速作出改变——这应该归因于高速的衰减与转录。此外,他们指出,高转变率可能是许多神经细胞miRNA的一个普遍特性。

小核糖核酸(miRNAs,又称小RNA)通常被认为具有很长的半衰期。然而,瑞士科学家日前发现,在小鼠的视网膜中,为了响应黑暗与光亮的影响,特定miRNA的水平能够迅速作出改变——这应该归因于高速的衰减与转录。此外,他们指出,高转变率可能是许多神经细胞miRNA的一个普遍特性。

视网膜的敏感性能够适应光线水平的变化,然而科学家对于其背后的运行机制,以及这种适应对光感受器的分子机制构成的影响却一直缺乏全面的了解;瑞士巴塞尔市Friedrich  Miescher生物医学研究所的Jacek  Krol等人于是研究了miRNA是否与此有关。通过对采自小鼠的视网膜——能够适应明亮或黑暗的环境——进行深度测序和微阵列技术分析,研究人员鉴别出了小鼠视网膜中表达的253种miRNA。由光线诱导的miRNA包括miR-204和miR-211,它们在视网膜的内核层被高度地表达,而miR-183/96/182则在光感受器中有高度表达。

这些miRNA的水平能够迅速变化——它们在小鼠被移到暗处后的90分钟内达到最低值,而在小鼠重新回到阳光下的30分钟后又达到最高值。研究人员通过药理学抑制转录防止了由光线引发的miRNA水平的增加。有趣的是,在转录被抑制后,几种非光线调节的miRNA的水平也迅速降低,这意味着即便不是全部,快速miRNA转变也能够适用于大多数的视网膜miRNA。

这启发研究人员开始思考是否非视网膜的神经细胞也具有这种快速的miRNA转变的能力。在研究过程中,大多数——尽管不是全部——在生物体外培育的海马回和大脑皮质神经细胞中的miRNA表现出了高度的转变能力,但是在神经胶质中表达的miRNA却不具备这样的特性。此外,在分化的神经细胞中,对转录的药理学抑制显示了miRNA的迅速衰减,但在胚胎干细胞或神经祖细胞中则没有出现这种情况。总体来看,这些数据表明,与其他细胞类型中的miRNA相比,神经细胞的miRNA经历了更快速的转变。研究人员还注意到,刺激或抑制谷氨酸受体能够分别使许多神经细胞miRNA的转变加速和缩减,这意味着神经细胞的活性控制着miRNA的新陈代谢。

这些发现表明,与非神经细胞中的miRNA形成对比的是,神经细胞中的miRNA能够被迅速生产和退化。更进一步的实验将着眼于这种快速转变背后的机制研究。

研究人员在最近出版的《细胞》(Cell)杂志上报告了这一研究成果。

原文出处:

Cell DOI:10.1016/j.cell.2010.03.039

Characterizing Light-Regulated Retinal MicroRNAs Reveals Rapid Turnover as a Common Property of Neuronal MicroRNAs
Jacek Krol, Volker Busskamp, Ilona Markiewicz, Michael B. Stadler, Sebastian Ribi, Jens Richter, Jens Duebel, Silvia Bicker, Hans J?rg Fehling, Dirk Schübeler, Thomas G. Oertner, Gerhard Schratt, Miriam Bibel, Botond Roska, Witold Filipowicz

Adaptation to different levels of illumination is central to the function of the retina. Here, we demonstrate that levels of the miR-183/96/182 cluster, miR-204, and miR-211 are regulated by different light levels in the mouse retina. Concentrations of these microRNAs were downregulated during dark adaptation and upregulated in light-adapted retinas, with rapid decay and increased transcription being responsible for the respective changes. We identified the voltage-dependent glutamate transporter Slc1a1 as one of the miR-183/96/182 targets in photoreceptor cells. We found that microRNAs in retinal neurons decay much faster than microRNAs in nonneuronal cells. The high turnover is also characteristic of microRNAs in hippocampal and cortical neurons, and neurons differentiated from ES cells in vitro. Blocking activity reduced turnover of microRNAs in neuronal cells while stimulation with glutamate accelerated it. Our results demonstrate that microRNA metabolism in neurons is higher than in most other cells types and linked to neuronal activity.

对不起,暂无资料。
点击这里给我发消息 点击这里给我发消息 点击这里给我发消息
Baidu
map