日前,美国科学家最新一项研究表明,衰老期老鼠和青年期老鼠的血液融合在一起,能够起到恢复活力的作用,有望使衰老期老鼠获得新生。
这支研究小组是由美国马萨诸塞州哈佛干细胞协会艾米-瓦格斯(Amy Wagers)领导的,他们发现青年期老鼠的血液好像可以使衰老期老鼠骨髓中衰老的血液干细胞恢复活力,同时它也可以恢复骨髓中一种“生态区位细胞”,该细胞起到滋育、供给和刺激血液干细胞的作用。
虽然衰老期老鼠比青年期老鼠体内具有更多的血液干细胞和生态区位细胞,但多数存在着缺陷,并且无法像青年期老鼠那样有效地修复身体。艾米说:“衰老期老鼠体内有过多的血液干细胞,很可能是为了弥补血液干细胞的缺陷,同时,衰老期老鼠也有更多的骨髓血细胞,它很容易引起感染并诱发癌症,此外由于过少的淋巴样血细胞,不能有效地进行组织修复。”
但是当研究小组将21个月老鼠体内细胞植入仅2个月的老鼠体内,所有相关年龄状态的变化都颠倒了,血液混合后的老鼠具有很少的骨髓细胞和更多的淋巴林细胞。他们指出,这些青年期老鼠体内的血液注入衰老期老鼠体内,有望使其变得更加年轻。
着眼于未来更多的实验,艾米猜测通过导入1号胰岛素样生长因子(IGF-1),这种血液成分可能快速修补衰老期老鼠衰老的细胞,IGF-1因子与身体衰老有着直接关系。研究小组猜测IGF-1因子能够加速老鼠体内生态区位细胞的老化进程。当研究人员对衰老期老鼠骨髓中注入抵消IGF-1因子的抗体,生态区位细胞和干细胞将保持年轻状态。
艾米指出,目前这种方法尚处于初级研制阶段,它并不是十分安全的,通过向老年人体内骨髓注入抗体可以抵消IGF-1因子。这是由于IGF-1因子对于肌肉和骨骼生长至关重要,而抗体可以消除身体内剩余的IGF-1因子。艾米带领的研究小组目前正在寻求阻止骨髓中IGF-1因子产量启动化学信号的方法。
艾米称,我们尝试使用对年轻人进行输血法来延缓衰老,更加直接地模拟老鼠实验结果。一次性地关于血液因子实验并不会产生抗衰老作用,这将是一个持续性过程。
原始出处:
Nature 463, 495-500 (28 January 2010) | doi:10.1038/nature08749
Systemic signals regulate ageing and rejuvenation of blood stem cell niches
Shane R. Mayack1, Jennifer L. Shadrach1, Francis S. Kim1 & Amy J. Wagers1
1 Department of Stem Cell and Regenerative Biology, Harvard University, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Joslin Diabetes Center, One Joslin Place, Boston, Massachusetts 02115, USA
Ageing in multicellular organisms typically involves a progressive decline in cell replacement and repair processes, resulting in several physiological deficiencies, including inefficient muscle repair, reduced bone mass, and dysregulation of blood formation (haematopoiesis). Although defects in tissue-resident stem cells clearly contribute to these phenotypes, it is unclear to what extent they reflect stem cell intrinsic alterations or age-related changes in the stem cell supportive microenvironment, or niche. Here, using complementary in vivo and in vitro heterochronic models, we show that age-associated changes in stem cell supportive niche cells deregulate normal haematopoiesis by causing haematopoietic stem cell dysfunction. Furthermore, we find that age-dependent defects in niche cells are systemically regulated and can be reversed by exposure to a young circulation or by neutralization of the conserved longevity regulator, insulin-like growth factor-1, in the marrow microenvironment. Together, these results show a new and critical role for local and systemic factors in signalling age-related haematopoietic decline, and highlight a new model in which blood-borne factors in aged animals act through local niche cells to induce age-dependent disruption of stem cell function.