运用进化基因组学的方法,中科院动物研究所朱顺义研究员领导的团队首次从丽蝇蛹集金小蜂基因组中鉴定了44个抗微生物肽新基因,组建了第一个寄生性昆虫抗微生物肽基因蓝图。进一步研究证实,金小蜂抗微生物肽基因在细菌攻击后转录本的表达水平显着上调。利用化学合成和遗传重组表达的蛋白,他们对其中不同类别的代表性序列进行了结构、功能和进化研究,确定了4个抗微生物肽基因的抗微生物活性,发现γ-core区域是防御肽Navidefensin2-2的抗菌活性表面。他们的结果还表明,基因重复和功能区域的正选择可能驱动了金小蜂防御肽基因家族的适应性进化。
此外,运用比较基因组学的方法,研究人员还发现,与同为膜翅目的意大利蜜蜂(Apis mellifera)相比,金小蜂直系同源的抗微生物肽基因发生了明显的变化。主要表现在基因数量扩张,蛋白质末端延长,功能域的串联重复和融合以及结构多样性改变等。他们发现,基因和外显子重复以及外显子改组是造成这类寄生性昆虫免疫防御分子复杂度增加的最主要原因。
该系列研究工作的科学意义在于:1)在国际上首次建立了第一个寄生性昆虫的全套抗微生物肽数据,为金小蜂天然免疫以及寄生和免疫的关系研究奠定了基础;2)该研究发展的快速鉴定抗微生物肽基因的计算基因组学策略,有望拓展到其它模式生物,包括人类抗微生物肽新基因的发现,这将加速人类对于抗微生物肽介导的天然免疫防御网络进化的研究。
研究主要结果发表在国际刊物《过程生化》,《发育与比较免疫学》和《BMC基因组学》上。
原文出处1:
Process Biochemistry doi:10.1016/j.procbio.2009.08.017
Characterization of a hymenoptaecin-like antimicrobial peptide in the parasitic wasp Nasonia vitripennis
Bin Gaoa and Shunyi Zhu, a,
a Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
Hymenoptaecin is a Hymenoptera insect-specific, glycine-rich antimicrobial peptide (AMP) found in non-parasitic bees. Here, we describe a unique hymenoptaecin-like gene (named nahymenoptaecin-1) in the parasitic wasp Nasonia vitripennis, which codes for a larger protein precursor with a carboxyl-terminal hymenoptaecin-like domain (HLD) similar to the bee hymenoptaecin. We recombinantly produced its full-length bioactive form as well as 1–33 and 34–98 fragments (named HLD-n and HLD-c, respectively). Recombinant HLD exhibited activity against Gram-negative and Gram-positive bacteria at micromolar concentrations. Compared to the full-length peptide, HLD-c possessed similar potency in inhibiting the growth of Stenotrophomonus but had a narrower antibacterial spectrum, whereas HLD-n only displayed weak effect on Stenotrophomonus, suggesting that HLD-n is a crucial determinant for bacterial target selectivity while HLD-c represents its active unit for the whole molecule. Circular dichroism analysis combined with ab initio structure prediction by Robetta indicated that HLD-n adopts a random coil conformation whereas glycine-rich HLD-c forms a loose β-sheet structure. Relative to bee hymenoptaecin, the upstream region of HLD contains two accurately repeated proline-rich AMP-like peptides instead of an acidic propeptide. Such difference could be a consequence of exon shuffling of autonomous modules after speciation.