据6月25日出版的《科学》(专题:Science系列)杂志报道,美国科学家们制造出了一块如橡皮擦大小的“芯片肺”,它可模仿那些穿过整个肺脏的上皮细胞和血管之间边界的许多特征,这一系统或可帮助研究人员非常精准地了解肺脏器官的运作方式,而这些信息是很难从细胞培养或动物研究中获取的。研究人员表示,“芯片肺”可望用于检验新药效果以及人体肺部毒素影响,并终结这些测试所需的动物实验。
哈佛大学维斯生物工程研究院的研究人员利用血管细胞制成的“芯片肺”由肺细胞、渗透膜以及毛细血管组成,类似于网孔的渗透膜上排列着人体细胞(一边是肺部细胞,另一边是血液细胞),渗透膜组成的微通道约400微米长,70微米宽(人的头发丝的直径约为100微米),可允许空气或液体围绕着膜流动。当该芯片同一个机械泵和调节阀连接时,它可以模拟人体肺部的呼吸活动。
研究人员已经证明,这种“芯片肺”能够精确地模拟大鼠肺脏的很多功能,包括肺部吸入纳米粒子后作出的反应等。
目前的药物测试技术主要有两种:一是使用过于简单化的细胞培养模式,这种方法是在一个固态的塑料器皿中培养细胞,接着让其接触不同的药物,并测试其反应;二是使用动物实验,科学家使用老鼠来测试药物的有效性和安全性,但这种方法耗时耗力。
研究人员表示,为了模仿人体肺部细小而精确的通道,他们利用了电路制造工艺创建出了一个计算机微芯片,这种微观结构使研究人员得以更好地操纵活体生物比如细胞等。该研究成果对于在实验室中重建人体细胞具有非常重要的示范意义,亦可通过减少对现有模型(对单一物质进行测试的费用就超过200万美元)的依赖而加速新药开发的进程。
哈佛研究人员目前正在研发其他的“器官芯片”,诸如肠、心脏和肾等,他们希望最终能够将不同的器官集成在芯片上,以在药物测试和毒理测试中彻底摒弃动物实验。
不过,研究人员指出,要做到这一点还面临着很多的困难。比如,如何使芯片的使用更为方便,如何将泵和调节器整合入芯片中等,还都是亟待解决的问题。
原文出处:
Science DOI: 10.1126/science.1188302
Reconstituting Organ-Level Lung Functions on a Chip
Dongeun Huh,1,2 Benjamin D. Matthews,2,3 Akiko Mammoto,2 Martín Montoya-Zavala,1,2 Hong Yuan Hsin,2 Donald E. Ingber1,2,4,*
Here, we describe a biomimetic microsystem that reconstitutes the critical functional alveolar-capillary interface of the human lung. This bioinspired microdevice reproduces complex integrated organ-level responses to bacteria and inflammatory cytokines introduced into the alveolar space. In nanotoxicology studies, this lung mimic revealed that cyclic mechanical strain accentuates toxic and inflammatory responses of the lung to silica nanoparticles. Mechanical strain also enhances epithelial and endothelial uptake of nanoparticulates and stimulates their transport into the underlying microvascular channel. Similar effects of physiological breathing on nanoparticle absorption are observed in whole mouse lung. Mechanically active "organ-on-a-chip" microdevices that reconstitute tissue-tissue interfaces critical to organ function may therefore expand the capabilities of cell culture models and provide low-cost alternatives to animal and clinical studies for drug screening and toxicology applications.
1 Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.
2 Vascular Biology Program, Departments of Pathology and Surgery, Children’s Hospital Boston, and Harvard Medical School, Boston, MA 02115, USA.
3 Department of Medicine, Children’s Hospital Boston, Boston, MA 02115, USA.
4 School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.