近日,美国斯坦福大学霍华德休斯医学研究所,著名华人神经生物学家骆利群博士课题小组的李凌博士及同事开发了一项能够在成体水平小鼠脑区的复杂神经网络系统中特异性标记单个神经元细胞及其神经突触分布形式的技术。
该项技术利用转基因方法在小鼠不同脑区的神经元细胞可控地表达不同的荧光蛋白和Synaptophysin (突触囊泡蛋白),应用不同分子标记对神经元细胞及其突触进行特异性标记,能够在单个神经元细胞水平上提供详尽的三维神经突触分布信息,从而了解单个神经元细胞在复杂脑区回路的连接机制,对于破译大脑复杂神经回路提供了方法学上的可能。该项成果已经发表在近日的PLoS ONE杂志上。
三维神经细胞体内照片(此照片由斯坦福大学骆利群教授提供)3D图像下载地址
现代神经生物学的一个重要课题就是怎样破解哺乳动物甚至人类的高度复杂化的神经网络 ---大脑。神经系统中神经元细胞功能和结构上的多样性,神经回路的高度复杂性对这个当代神经生物学的关键性问题提出了极大的挑战。此项全新的神经元标记方法无疑提供了有力工具。此项技术可以显示转基因小鼠大脑的不同区域在不同发育阶段的各种特异性神经元及其突触分布形式,这将使神经生物学家能够了解大脑神经网络发育的详尽信息,有助于对大脑工作方式进行深入研究。能够直接地、实时地观测到活体实验小鼠大脑中未分化的细胞一步步发育为单个的复杂神经细胞,然后形成复杂的神经网络,这对于未来的神经回路研究领域意义重大。该技术不仅能推动在正常或病态脑中的测绘工作,而且还可以推广用到其他复杂细胞群中,例如免疫系统或者造血干细胞系统等等。
李凌博士曾经就职于麻省理工学院(MIT)著名的怀特海(Whitehead)研究所,在美国著名科学院院士Harvey Lodish的实验室工作期间发表于《科学》(Science)杂志的学术论文,揭示了microRNA功能,被评选为2004年十大科学研究突破之一。 2005年李凌博士加入斯坦福大学骆利群实验室,开始了对哺乳动物神经回路发育的研究。在此期间,李凌及其同事发现,目前的神经网络研究极大地受限于神经细胞标识技术,因此致力于开发单个神经元细胞的标记方法。李凌博士及其同事已经利用该技术对小鼠小脑进行了初步研究,结果显示小鼠小脑中的颗粒细胞(granule cell)的神经突触密度比人们以前的估计高出一倍,这意味着小鼠小脑中的神经网络比以前的估计还要复杂。目前,世界最著名的生物制药公司之一基因泰克(Genentech)已经向斯坦福大学购买了此项专利,并已开始将其用于对人类神经系统疾病及相关药物的研究和开发。(生物谷Bioon.net)
原文出处:
PLoS ONE 5(7): e11503. doi:10.1371/journal.pone.0011503
Visualizing the Distribution of Synapses from Individual Neurons in the Mouse Brain
Ling Li1, Bosiljka Tasic1, Kristina D. Micheva2, Vsevolod M. Ivanov 1,3, Maria L. Spletter1, Stephen J. Smith2, Liqun Luo1*
1 Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, California, United States of America, 2 Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America, 3 Lynbrook High School, San Jose, California, United States of America
Background
Proper function of the mammalian brain relies on the establishment of highly specific synaptic connections among billions of neurons. To understand how complex neural circuits function, it is crucial to precisely describe neuronal connectivity and the distributions of synapses to and from individual neurons.
Methods and Findings
In this study, we present a new genetic synaptic labeling method that relies on expression of a presynaptic marker, synaptophysin-GFP (Syp-GFP) in individual neurons in vivo. We assess the reliability of this method and use it to analyze the spatial patterning of synapses in developing and mature cerebellar granule cells (GCs). In immature GCs, Syp-GFP is distributed in both axonal and dendritic regions. Upon maturation, it becomes strongly enriched in axons. In mature GCs, we analyzed synapses along their ascending segments and parallel fibers. We observe no differences in presynaptic distribution between GCs born at different developmental time points and thus having varied depths of projections in the molecular layer. We found that the mean densities of synapses along the parallel fiber and the ascending segment above the Purkinje cell (PC) layer are statistically indistinguishable, and higher than previous estimates. Interestingly, presynaptic terminals were also found in the ascending segments of GCs below and within the PC layer, with the mean densities two-fold lower than that above the PC layer. The difference in the density of synapses in these parts of the ascending segment likely reflects the regional differences in postsynaptic target cells of GCs.
Conclusions
The ability to visualize synapses of single neurons in vivo is valuable for studying synaptogenesis and synaptic plasticity within individual neurons as well as information flow in neural circuits.