2016年12月28日,国际免疫学领域重要的顶级期刊、洛克菲勒大学出版社的旗舰杂志《Journal of Experimental Medicine》在线发表了中国科学院动物研究所血液与心血管发育研究组刘峰研究组和同济大学医学院丁玉强研究组合作的一篇研究论文,论文题为”5-hydroxytryptamine synthesized in the aorta-gonad-mesonephros regulates hematopoietic stem and progenitor cell survival “。研究组博士研究生吕军华和副研究员王璐为共同第一作者,刘峰为通讯作者。
造血干/祖细胞(Hematopoietic stem and progenitor cells,HSPCs)是一群能自我更新并分化为各种成熟血细胞的多能干细胞。基于其重建血液系统的能力,造血干细胞移植已成功用于治疗白血病等恶性血液疾病。如何体外诱导和扩增足够数量且有功能的HSPCs,是临床上恶性血液疾病治疗的瓶颈,也是基础科学研究的难点和热点之一。其目前尚未成功的根本原因在于人们对HSPCs产生和扩增的调控机制认识仍不全面。因此,应用模式动物深入和系统地研究体内HSPCs产生和扩增过程及其调控机制,将对体外诱导并扩增有功能的HSPCs具有十分重要的指导意义。
刘峰研究组早期的工作证实,参与5-羟色胺(5-HT)合成的转录因子Fev(哺乳动物的Pet1)是斑马鱼和人HSPCs发育所必需的关键因子(Blood, 2013);最近的合作研究发现FEV仅在出生前起源的白血病细胞表达,表明其可以作为白血病起源的诊断标记(Leukemia, 2016)。此外,有报道表明,5-HT处理体外培养的人脐带血HSPCs能促进其克隆形成能力,但机制不明。为深入探究5-HT与哺乳动物HSPCs发育的关系,刘峰研究组通过体外集落形成和脾结节实验发现,5-HT处理后的小鼠主动脉-性腺-中肾区(AGM)中HSPCs克隆形成能力显著增强。色氨酸羟化酶2(Tph2)是5-HT合成的限速酶。在其突变体胚胎中(tph2+/-和pet1-cre;tph2+/fl),AGM区造血簇大小和数目显著降低,HSPCs重建受体小鼠造血能力显著下降。为确定调控HSPCs的5-HT的来源,该研究发现Pet1、Tph2和AAAD等(参与5-HT合成的重要转录因子和合成酶)在AGM区内皮细胞和间充质细胞中均有表达。进一步研究表明,内皮细胞特异性缺失tph2(vec-cre;tph2+/fl)的小鼠胚胎中,5-HT在AGM区内皮细胞中会显著降低,HSPCs的发育受到影响。因此,AGM区内皮细胞产生的5-HT参与调控胚胎期HSPCs的发育。
rna-seq及生化实验证实,AGM区5-HT的降低会激活AKT-Foxo1介导的促凋亡通路,致使小鼠胚胎造血簇中HSPCs凋亡显著增加。这一过程是由5-HT的受体Htr5a介导的。此外,研究过程中意外地发现,尽管在tph2-/-和pet1-cre;tph2fl/fl胚胎中,凋亡信号显著上调,但AGM区造血簇数量却是正常的。深入研究发现,在完全缺失tph2 的胚胎中,Shh-Nkx2.2-Lmx1b-Pet1通路因负反馈调控而上调,ERK信号被激活,导致造血簇中HSPCs增殖加快,进而使得tph2-/-胚胎中造血发育缺陷得到恢复。
研究工作首次证实了5-HT在胚胎期HSPCs发育和扩增中的直接作用。该研究不仅拓展和完善了体内HSPCs发育过程的调控机制,同时也为体外诱导和扩增有功能的HSPCs提供了新思路。
模式图:5-羟色胺调控小鼠胚胎期造血干细胞发育
原文摘要:The in vitro or ex vivo production of transplantable hematopoietic stem cells (HSCs) holds great promise for the treatment of hematological diseases in the clinic. However, HSCs have not been produced from either embryonic or induced pluripotent stem cells. In this study, we report that 5-hydroxytryptamine (5-HT; also called serotonin) can enhance the generation of hematopoietic stem and progenitor cells (HSPCs) in vitro and is essential for the survival of HSPCs in vivo during embryogenesis. In tryptophan hydroxylase 2–deficient embryos, a decrease in 5-HT synthesized in the aorta-gonad-mesonephros leads to apoptosis of nascent HSPCs. Mechanistically, 5-HT inhibits the AKT-Foxo1 signaling cascade to protect the earliest HSPCs in intraaortic hematopoietic clusters from excessive apoptosis. Collectively, our results reveal an unexpected role of 5-HT in HSPC development and suggest that 5-HT signaling may be a potential therapeutic target for promoting HSPC survival.