山东省干细胞工程技术研究中心利用不同来源的人类成体细胞成功克隆出五枚符合国际公认技术鉴定指标的人类囊胚。该项研究成果已经发表在今年一月二十七日出版的克隆和干细胞领域国际权威学术期刊CLONING AND STEM CELLS上。
研究主要是采用了先进的三维立体偏震光纺锤体成像系统,对卵母细胞纺锤体(核DNA)精确定位后,再用微激光对卵子的透明带打孔,精确剔除卵子细胞核。通过核移植后所获得的囊胚进行了核的DNA遗传多态性位点鉴定,不同细胞阶段克隆胚胎的供体与受体细胞浆中线粒体定量动态学分析和囊胚线粒体遗传多态性位点SNP鉴定。不但应用人类成纤维体细胞获得克隆胚胎,更重要的是应用帕金森病患者外周血的淋巴细胞作为供体细胞也成功获得囊胚,这使人类治疗性克隆研究向前迈进了一大步。
推荐原始出处:
Cloning and Stem Cells. ahead of print. doi:10.1089/clo.2008.0041.
Human Embryos Derived by Somatic Cell Nuclear Transfer Using an Alternative Enucleation Approach
Jianyuan Li,Xuexia Liu,Haiyan Wang,Shouxin Zhang,Fujun Liu,Xuebo Wang,Yanwei Wang
Shandong Research Center of Stem Cell Engineering, China.
Somatic cell nuclear transfer (SCNT) was used to generate patient-specific embryonic stem cells (ESCs) from blastocysts cloned by nuclear transfer (ntESCs). In this study, a total of 135 oocytes were obtained from 12 healthy donors (30–35 years). Human oocytes, obtained within 2 h following transvaginal aspiration, were enucleated using a Spindle Imaging System to position the spindle and chromosomes that lay on the metaphase plate, and a Zona Infrared Laser Optical System was used to open a single hole in the zona pellucida at the 2 o'clock position. Human fibroblasts and lymphocytes were used to construct SCNT embryos. Nearly half (26 of 58) of the oocytes were fused after electrofusion and embryo development rates were 96.2% (two-cell, 25 of 26), 92.3% (four-cell, 24 of 26), 61.5% (eight-cell, 16 of 26), 34.6% (16-cell, 9 of 26), 26.9% (morula, 7 of 26), and 19.2% (blastocyst, 5 of 26), respectively, following incubation in improved G-series sequential medium. One cloned blastocyst was used for STR-DNA identification and genetic polymorphism analysis of mtDNA, and STR-DNA analysis of all cloned blastocysts indicated they were derived from SCNT. Quantitative analysis showed that mtDNA of cloned embryos reflected the change tendency of those observed in human IVF embryos. Our research provides an alternative enucleation approach for producing human SCNT-derived blastocysts, and may aid in providing a new method for human therapeutic cloning.